SOLUTION SHEET 5:

1. (i) K=Q, f(x)=x4-7. f factorizes as

 $f(x) = (x^2 - 57)(x^2 + 57) = (x - 17)(x + 157)(x - 157)(x + 157)$

and by Eisenstein's content + Gauss! lemma f is irreducible.

As charQ=0 L/K is Galois

Note that L=Q(457,i) and Q=Q(457)=L

=> [L:K] = [L:Q(")].[Q(")]:Q]

ord the minimal paynomial of i over Q(457) is x2+1 => [L:Q(57)]=2. >> [L:K]=8 >> (Gc1(L/K))=8

Note that SEGOI(LIK) is determined by its oction on i and "J7. Let T, of EGALLIK) St O(i)=-i and O(457)=457 and T(i)=i T(457)=i457. These are indeed K-automorphisms of L Moreover order of T is 4 i.e O(T)=4 and O(D)=2. Finally, $O(T)(i^4J7)=D(T)(-i^4J7)=J7$ & O(T)(i)=i \Rightarrow O(T)=T-i⇒ Gal(L/K) ≥ Dg dihedral group on 8 elements.

There are 8 non-trivial subgroups of Dg. Hore is the list:

order 2: \$ id, 723, \$ id, 03, \$ id, 7208, \$ id, 707, \$ id, 7307.

fixed fields: Q(57,i), Q(57), Q(147), Q(47+177),Q(457-147).

order 4: { id, 0, 72, 220}, { id, 70, 72, 230], \ id, 7, 72, 73?

fixed fields:

 $\mathbb{Q}(\overline{J_7})$, $\mathbb{Q}(i\overline{J_7})$, $\mathbb{Q}(i)$

- (ii) K= Fg f= x4-7 Once again L/K is Galois and Gal(L/K) is again & is generated by the Frobenius morphism. Let α be a root of $f=x^4-2$. Then as any field extension of finite fields is Galois (in particular normal) SFIELF) = Its(a). Now [Its(a): Its] = degf = 4 => | Gal(L/K)=4
- \Rightarrow Gal (L/K) \cong 2/47/. \Rightarrow only non thiral subgroup is $\frac{2}{2}$ whose corresponding fixed field is $\frac{1}{2}$ (α^2). Indeed x^2-7 is the minimal poly of α^2 in Its[x] => [Its(x2): K3=2 and F2(x2)= x50= x4.12+2= 212.x2= x2.
- (iii) $K = F_5 + F_5 + K_5 +$ hence $SF_{F_2}(x^b+1) = SF_{F_2}(x^3+1) = SF_{F_2}(x^2+x+1)$ and x^2+x+1 is iff. \Rightarrow as before [L: K] = 2 and Gal(L/K) = $\frac{7}{2}$ which aloesn I have any non-trivial subgroups.
- (iv) K = Q, $f = x^8 1$ Note that $L = Q(\omega)$ where ω is a primitive root of unity i.e min newso i nlwn-1? = 8. (take for instance w = e 277./8) Note that $x^{k-1} = (x^{4}-1)(x^{4}+1) \Rightarrow w$ is a root of $x^{4}+1$ which is imeducible in D[x]. => [L:K]=4 => |Gal(L/K)1=4. Let to E Gal(L/K) then to (w) is a noot of x4+1. Now the noots of $\times^4 + 1$ are $\omega, \omega^3, \omega^5, \omega^7$. Indeed, $\omega^4 = -1 \Rightarrow (\omega^3)^4 = \omega^{12} = (-1)^3 = -1$

and likewise for w5 & w7. Now as Gull L/K1 acts transitively on the roots of X4+1, 30 EGal (L/K) Such that O(w) = w3. Then o2(w) = w9= w likewise Fre Gal(4K) TW)= w5 and T2(W)= w finally TO(W)= w7. This shows that GallL/K1 = 4/22 × 4/21. The subgroups are

fixed : Q(ω+ω³) Q(ω+ω⁵) Q(ω+ω³) $\omega + \omega_3$

- 2. An intermediate field KCFCL such that [F:K]=2 corresponds to a subgroup Hof Gal(L/K)=A4 such that IHI=6. But such a subgrap doesn't exist. Indeed there are 2 groups of order 6 up to isomorphism It can be also seen that H\$Sz as follows. Suppose H=Sz than H contains 3 Clements of order 2 and the identity, but these elements in Ay form a subgroup so H has a subgroup of order 4 which is not possible.
- 3. (i) Let $K = \mathbb{F}_p(t)$ and $L = \mathbb{F}_p(t^{1/p})$ then [L:K] = p as the minimal pay. of $t^{1/p}$ in $\mathbb{F}_p(t)[x]$ is $x^p t$. But in L, $x^p-t=(x-t^2)^p$ therefore there is only one root of x^p-t which is t1/P thus L/K is normal but this not repealed p times ⇒ L/K not separable.

(ii) Any non-normal field extension of fields of 0 characteristic works eq QCQ(452).

- (iii) Let L be a Galois extension of K such that Gal(L/K)=A4 Consider the fixed field F of ((123)). Then [F:K]=4. Now an intermediate field KCHCF such that CH: KJ=2 is also on intermediate field KCHCL but Gal(L/Q)=A4 => by exercise 2 such an extension doesn't exist
- 4. Define K := SFQ(f). First note that QCK is Galois and G := Gal(K/R) permutes the p many roots of f transitively (as DCK is normal) thus G is a subgroup of Sp. Write $K = Q(\Gamma_1, \Gamma_2, -, \Gamma_p)$ where Γ_i are the noots of f. Now consider the intermediate extension $Q \subseteq Q(r_2) \subseteq K$, as $[Q(r_2):Q]=p$ p | [K:Q]. This implies that plicil, by Couchy thin. there exists on element to of order p in Go. It is not hard to see that in Sp the only element of order p is a cycle of length p. Note that the two non-real noots are conjugate to each other and complex conjugation · is in Gal (K/Q). Let \$1,52 be the two non-real roots ther - exchanges 12 & 12 and fixes all the other roots. Therefore in Sp

- corresponds to a 2-cycle. Now we show that the subgroup generated by a p-cycle or and a transposition in Sp is Sp. Suppose wlog that - corresponds to the transposition (12). Now there exist some number 1 < i < p 1 such that oi(1)=2 ord σ^i is also a p-cycle as its order is p. We can write $\sigma^i = (12...)$. From group theory we know that a transposition (12) & on n-cycle (12...) generates Sn. So we are done.

5. First of all notice that $\alpha^2 \cdot \beta^2 = b$ and $-\alpha^2 - \beta^2 = a$. We claim that $\mathbb{Q}(w, \alpha) = L$ where $w = \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$. Clearly, $\mathbb{Q}(w, \alpha) \subseteq L$ to see the inclusion notice that $w = x^2 - B^2$ and $B^2 \in \mathbb{Q}(x)$ as $-B^2 = a + \alpha^2$ Bol this shows that BEQ(x,w). Now notice that [Q(w):Q] <2 incled $w^2 \in \mathbb{Q}$ (this can be shown by doing some algebraic manipulations). Suppose that we Q. Now consider the following chain of extensions. QCQ(x) CQ(w, x) Thus Q(x) is a fixed field of Gal(L/Q). Moreover as [Q(x):Q]=4 he have that Q(a) = Q(w, x) H for H some subgroup of order two of Gal(470) Let $H = \{id, \sigma\}$ then $\sigma(\alpha) = \alpha$ and $\sigma(\beta) = -\beta$. Now consider Q = Q(w) = Q(x,w). As before Q(w) = Q(w, x) for Some Subgroup T of Gral(L/Q) of orler 4. Let TET then T(X) + X. If T(X) = - & then T(W) = - & + T(B) Let T(E) = T(B) = -B. and T(W) = W => T(B) = -B. T(B) B = -B = in this case T has order 4. Likewise if T(d)=-B, T has order 4. This shows that T contains on element of order 4 as each element of T fits into one of these cases thus T=2/42. Finally we conser that 7,0 in Gall-10) generates D8 => Gall-401=D8. If well. Then w is fixed by Gallian hence by the above argument 16a1(40)=4 & Gal(40)= 4/42. If Gal(UR)=7/42 then L=Q(x). The only permutations tof the

If $Gal(UR) \cong 42$ then L = R(x). The only permutations z of the roots of f of order u are u are u both of these fix u so u and u are u are u and u are u and u are u are u and u are u are u and u are u and u are u are u and u are u are u and u are u and u are u are u are u and u are u are u are u and u are u are u are u are u and u are u are u are u are u are u are u and u are u and u are u and u are u ar